p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.16D4, C23.8SD16, C4⋊C4.16D4, C23⋊C8⋊11C2, (C2×D4).19D4, (C22×C4).52D4, C2.9(D4⋊4D4), C22⋊C8⋊39C22, C23⋊3D4.3C2, C23.530(C2×D4), C23.4Q8⋊1C2, C2.8(C22⋊SD16), C22.SD16⋊15C2, C4⋊D4.13C22, (C22×C4).19C23, C22.33(C2×SD16), C22.140C22≀C2, C23.46D4⋊25C2, C22.44(C8⋊C22), C2.C42⋊6C22, C2.10(C23.7D4), (C2×C4⋊C4)⋊2C22, (C2×C4).208(C2×D4), (C2×C22⋊C4).99C22, SmallGroup(128,345)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C22 — C23 — C22×C4 — C2×C22⋊C4 — C23⋊3D4 — C24.16D4 |
Generators and relations for C24.16D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=c, f2=dc=cd, eae-1=faf-1=ab=ba, ac=ca, ad=da, bc=cb, ebe-1=bd=db, bf=fb, ce=ec, cf=fc, de=ed, df=fd, fef-1=de3 >
Subgroups: 420 in 144 conjugacy classes, 34 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C22⋊C8, D4⋊C4, C4.Q8, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C4⋊D4, C22.D4, C22×D4, C23⋊C8, C22.SD16, C23.4Q8, C23.46D4, C23⋊3D4, C24.16D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C8⋊C22, C22⋊SD16, D4⋊4D4, C23.7D4, C24.16D4
Character table of C24.16D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ20 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ21 | 4 | 4 | -4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ22 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
(1 5)(2 14)(3 19)(4 28)(6 10)(7 23)(8 32)(9 13)(11 27)(12 20)(15 31)(16 24)(17 21)(18 30)(22 26)(25 29)
(1 9)(2 30)(3 11)(4 32)(5 13)(6 26)(7 15)(8 28)(10 22)(12 24)(14 18)(16 20)(17 25)(19 27)(21 29)(23 31)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 24 17 8)(2 7 18 23)(3 22 19 6)(4 5 20 21)(9 12 25 28)(10 27 26 11)(13 16 29 32)(14 31 30 15)
G:=sub<Sym(32)| (1,5)(2,14)(3,19)(4,28)(6,10)(7,23)(8,32)(9,13)(11,27)(12,20)(15,31)(16,24)(17,21)(18,30)(22,26)(25,29), (1,9)(2,30)(3,11)(4,32)(5,13)(6,26)(7,15)(8,28)(10,22)(12,24)(14,18)(16,20)(17,25)(19,27)(21,29)(23,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,24,17,8)(2,7,18,23)(3,22,19,6)(4,5,20,21)(9,12,25,28)(10,27,26,11)(13,16,29,32)(14,31,30,15)>;
G:=Group( (1,5)(2,14)(3,19)(4,28)(6,10)(7,23)(8,32)(9,13)(11,27)(12,20)(15,31)(16,24)(17,21)(18,30)(22,26)(25,29), (1,9)(2,30)(3,11)(4,32)(5,13)(6,26)(7,15)(8,28)(10,22)(12,24)(14,18)(16,20)(17,25)(19,27)(21,29)(23,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,24,17,8)(2,7,18,23)(3,22,19,6)(4,5,20,21)(9,12,25,28)(10,27,26,11)(13,16,29,32)(14,31,30,15) );
G=PermutationGroup([[(1,5),(2,14),(3,19),(4,28),(6,10),(7,23),(8,32),(9,13),(11,27),(12,20),(15,31),(16,24),(17,21),(18,30),(22,26),(25,29)], [(1,9),(2,30),(3,11),(4,32),(5,13),(6,26),(7,15),(8,28),(10,22),(12,24),(14,18),(16,20),(17,25),(19,27),(21,29),(23,31)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,24,17,8),(2,7,18,23),(3,22,19,6),(4,5,20,21),(9,12,25,28),(10,27,26,11),(13,16,29,32),(14,31,30,15)]])
Matrix representation of C24.16D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
12 | 5 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 2 | 2 | 15 |
0 | 0 | 15 | 15 | 2 | 15 |
0 | 0 | 2 | 15 | 2 | 2 |
0 | 0 | 2 | 15 | 15 | 15 |
5 | 12 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 2 | 2 | 15 |
0 | 0 | 2 | 2 | 15 | 2 |
0 | 0 | 2 | 15 | 2 | 2 |
0 | 0 | 15 | 2 | 2 | 2 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[12,12,0,0,0,0,5,12,0,0,0,0,0,0,2,15,2,2,0,0,2,15,15,15,0,0,2,2,2,15,0,0,15,15,2,15],[5,12,0,0,0,0,12,12,0,0,0,0,0,0,2,2,2,15,0,0,2,2,15,2,0,0,2,15,2,2,0,0,15,2,2,2] >;
C24.16D4 in GAP, Magma, Sage, TeX
C_2^4._{16}D_4
% in TeX
G:=Group("C2^4.16D4");
// GroupNames label
G:=SmallGroup(128,345);
// by ID
G=gap.SmallGroup(128,345);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,672,141,422,1123,570,521,136,1411]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=c,f^2=d*c=c*d,e*a*e^-1=f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^3>;
// generators/relations
Export